在最近发表于《自然·通讯》(Nature Communications)的新研究中,利用光照明远程控制疾病相关TDP-43蛋白质分子,日本联合研究团队在斑马鱼中成功重现了肌萎缩侧索硬化(ALS)的关键症状。 . W$ D1 R: ]- S& ]! ^
* a# U! p" I& G" b& |5 u6 E
ALS也被称为卢伽雷氏症或运动神经元病,患者运动神经元会进行性变性退化。这些运动神经元积累的内含物中含有聚合形式的TDP-43蛋白质。 9 Z: {# x% O& b( r! t: f
在人体中,运动神经元沿着脊髓排列,并沿着被称为轴突的“电缆”延伸,与覆盖身体表面的肌肉相连。这种解剖学特征致使运动神经元成为最难观察的细胞之一。因此,我们还不完全了解ALS中健康运动神经元何时以及如何开始变得异常。 . @- d. \5 w# N' L# @; A" }
% Q+ y/ W; N8 M' }- U# T
图:斑马鱼幼体中显示脊髓运动神经元的整个细胞(白色/红色)。骨骼肌为蓝色。 - @/ I! W; D2 }! j+ ]' }
在这项新研究中,通过将人类TDP-43附着在一种在吸收蓝光后形成蛋白质聚合物的植物蛋白上,研究人员设计出一种新的TDP-43变体。这种光控制或 “光遗传学的”(optogenetic)TDP-43在黑暗中能够正常发挥功能,但在蓝光照射下会逐渐形成聚合物。研究人员之所以关注斑马鱼的运动神经元,是因为它们与人类运动神经元有一些共同特征,而且由于斑马鱼身体透明,整个细胞可以被可视化。利用独创技术,研究人员在斑马鱼运动神经元中表达了光遗传学的TDP-43,并发现这些鱼类仅被蓝光照射时就会出现关键的ALS病状。 * s3 M. x k3 ]/ S) B$ Q- ^
出乎意料的是,运动神经元和肌肉之间的联系甚至在光照停止时和光遗传学的TDP-43聚合之前就减弱了。这一结果表明,运动神经元在TDP-43发展为典型的大聚合物之前就已经受损,这种大聚合物在ALS的终末期可以观察到。 0 i. {: a0 P8 a& K2 j) A9 N, r! S# C( u
# h; ~7 f* l+ B2 M0 o" Z( t3 r/ C- d
图:光遗传学ALS斑马鱼(右),蓝光照射后运动能力下降。 7 e/ [' w+ o# |9 _
该研究领导者Asakawa博士说:“这项研究首次表明,TDP-43聚合是动物运动神经元功能障碍的一个原因。我们认为被称为TDP-43低聚物的小TDP-43组装物对运动神经元的毒性可能比大的聚合物更大。 ' ]1 v* B2 L& }* w
“我们现在可以通过控制光照强度和位置,以一种临时和空间调谐的方式产生ALS样状态。我们未来几年的最终目标是找到能够阻止光发生TDP-43形成低聚物和聚集物的化学物质,我们希望这些化学物质能够用于ALS的治疗。” " I) ~* E+ E; }9 j. d
! X& ]8 c2 E9 P; V0 K% t3 J$ ?
1 G9 M+ e0 D) s/ U% \" r |